A note on determining pure-strategy equilibrium points of bimatrix games
نویسندگان
چکیده
منابع مشابه
A Note on Strategy Elimination in Bimatrix Games
A two person (or bimatrix) game is a pair of m x n matrices A. B, with integer entries. This game is played between two players A and B. Player A chooses a row t. player B simultaneously chooses a column j. As a result. A receives a,, (dollars, say), and B receives b,,. An easy way to simplify a bimatrix game is to eliminate from both A and B any strategy (row or column) that is dominated by an...
متن کاملAn Algorithm for Equilibrium Points in Bimatrix Games.
pi[M] = 3a(M). (Cf. Hirzebruch, ref. 4, Theorem 8.2.2, p. 85.) The proof of Lemma 1 is bagbd on the fact that 7rn+3(S5) is cyclic of order 24 for n > 5. t In the sense of J. H. C. Whitehead.'0 Any two regular neighborhoods of K in M are combinatorially equivalent by reference 10, Theorem 23. 1 Blij, F. van der, "An invariant of quadratic forms mod 8.," Proc. Nederl. Akad. v. Wetenschappen, Ser....
متن کاملEquilibrium Tracing in Bimatrix Games
We analyze the relations of the van den Elzen-Talman algorithm, the Lemke-Howson algorithm and the global Newton method introduced by Govindan and Wilson. It is known that the global Newton method encompasses the Lemke-Howson algorithm; we prove that it also comprises the van den Elzen-Talman algorithm, and more generally, the linear tracing procedure, as a special case. This will lead us to a ...
متن کاملCharacterization of the Equilibrium Strategy of Fuzzy Bimatrix Games Based on L-R Fuzzy Variables
This paper deals with bimatrix games in uncertainty environment based on several types of ordering, which Maeda proposed. But Maeda’s models was just made based on symmetrical triangle fuzzy variable. In this paper, we generalized Maeda’s model to the non-symmetrical environment. In other words, we investigated the fuzzy bimatrix games based on nonsymmetrical L-R fuzzy variables. Then the pseud...
متن کاملImproved Equilibrium Enumeration for Bimatrix Games
The enumeration of all equilibria of a bimatrix game is a classical algorithmic problem in game theory. As shown by Vorob’ev (1958), Kuhn (1961), and Mangasarian (1964), all equilibria can be represented as convex combinations of the vertices of certain polyhedra defined by the payoff matrices. Simplified by a projective transformation that eliminates the payoff variable, these polyhedra have t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1996
ISSN: 0898-1221
DOI: 10.1016/0898-1221(96)00153-8